วันพฤหัสบดีที่ 27 สิงหาคม พ.ศ. 2552

DTS07-26/08/52


Tree
ทรี (Tree) เป็นโครงสร้างข้อมูลที่ความสัมพันธ์ระหว่าง โหนดจะมีความสัมพันธ์ลดหลั่นกันเป็นลำดับชั้น (Hierarchical Relationship)ได้มีการนำรูปแบบทรีไปประยุกต์ใช้ในงานต่าง ๆ อย่างแพร่หลาย ส่วนมากจะใช้สำหรับแสดงความสัมพันธ์ระหว่างข้อมูลเช่น แผนผังองค์ประกอบของหน่วยงานต่าง ๆโครงสร้างสารบัญหนังสือ เป็นต้น
แต่ละโหนดจะมีความสัมพันธ์กับโหนดในระดับที่ต่ำลงมา หนึ่งระดับได้หลาย ๆ โหนดเรียกโหนดดังกล่าวว่า โหนดแม่ (Parent orMother Node)โหนดที่อยู่ต่ำกว่าโหนดแม่อยู่หนึ่งระดับเรียกว่า โหนดลูก (Child or Son Node)โหนดที่อยู่ในระดับสูงสุดและไม่มีโหนดแม่เรียกว่า โหนดราก (Root Node)
โหนดที่มีโหนดแม่เป็นโหนดเดียวกันเรียกว่า โหนดพี่น้อง (Siblings)โหนดที่ไม่มีโหนดลูก เรียกว่าโหนดใบ (Leave Node)เส้นเชื่อมแสดงความสัมพันธ์ระหว่างโหนดสองโหนดเรียกว่า กิ่ง (Branch)
นิยามของทรี
1. นิยามทรีด้วยนิยามของกราฟทรี คือ กราฟที่ต่อเนื่องโดยไม่มีวงจรปิด (loop) ในโครงสร้าง โหนดสองโหนดใด ๆ ในทรีต้องมีทางติดต่อกันทางเดียวเท่านั้น และทรีที่มี N โหนด ต้องมีกิ่งทั้งหมด N-1 เส้นการเขียนรูปแบบทรี อาจเขียนได้ 4
ก) แบบที่มีรากอยู่ด้านบน
ข) แบบที่มีรากอยู่ด้านล่าง
ค) แบบที่มีรากอยู่ด้านซ้าย
ง) แบบที่มีรากอยู่ด้านขวา
2. นิยามทรีด้วยรูปแบบรีเคอร์ซีฟทรีประกอบด้วยสมาชิกที่เรียกว่าโหนด โดยที่ ถ้าว่าง ไม่มีโหนดใด ๆ เรียกว่านัลทรี (Null Tree) และถ้ามีโหนดหนึ่งเป็นโหนดราก ส่วนที่เหลือจะแบ่งเป็นทรีย่อย (Sub Tree)T1, T2, T3,…,Tk โดยที่ k>=0 และทรีย่อยต้องมีคุณสมบัติเป็นทรี
นิยามที่เกี่ยวข้องกับทรี
1. ฟอร์เรสต์ (Forest)หมายถึง กลุ่มของทรีที่เกิดจากการเอาโหนดรากของทรีออกหรือ เซตของทรีที่แยกจากกัน(Disjoint Trees)
2. ทรีที่มีแบบแผน (Ordered Tree)หมายถึง ทรีที่โหนดต่าง ๆ ในทรีนั้นมีความสัมพันธ์ที่แน่นอน เช่น ไปทางขวาไปทางซ้าย เป็นต้น
3. ทรีคล้าย (Similar Tree) คือทรีที่มีโครงสร้างเหมือนกัน หรือทรีที่มีรูปร่างของทรีเหมือนกัน โดยไม่คำนึงถึงข้อมูลที่อยู่ในแต่ละโหนด
4. ทรีเหมือน (Equivalent Tree) คือทรีที่เหมือนกันโดยสมบูรณ์ โดยต้องเป็นทรีที่คล้ายกันและแต่ละโหนดในตำแหน่งเดียวกันมีข้อมูลเหมือนกัน
5. กำลัง (Degree) หมายถึงจำนวนทรีย่อยของโหนด นั้น ๆ เช่นในรูปโหนด “B” มีกำลังเป็น 1 เพราะมีทรีย่อย คือ {“D”}ส่วนโหนด “C” มีค่ากำลังเป็นสอง เพราะมีทรีย่อย คือ {“E”, “G”, “H”, “I”} และ {“F”}
6. ระดับของโหนด (Level of Node) คือระยะทางในแนวดิ่งของโหนดนั้น ๆ ที่อยู่ห่างจากโหนดราก เมื่อกำหนดให้ โหนดรากของทรีนั้นอยู่ระดับ 1และกิ่งแต่ละกิ่งมีความเท่ากันหมด คือ ยาวเท่ากับ 1หน่วย ซึ่งระดับของโหนดจะเท่ากับจำนวนกิ่งที่น้อยที่สุดจากโหนดรากไปยังโหนดใด ๆ บวกด้วย 1และจำนวนเส้นทางตามแนวดิ่งของโหนดใด ๆ ซึ่งห่างจากโหนดราก เรียกว่า ความสูง (Height) หรือความลึก (Depth)
การแทนที่ทรีในหน่วยความจำหลัก
การแทนที่โครงสร้างข้อมูลแบบทรีในความจำหลักจะมีพอยเตอร์เชื่อมโยงจากโหนดแม่ไปยังโหนดลูก แต่ละโหนดต้องมีลิงค์ฟิลด์เพื่อเก็บที่อยู่ของโหนดลูกต่าง ๆ นั่นคือจำนวน ลิงค์ฟิลด์ของแต่ละโหนดขึ้นอยู่กับจำนวนของโหนดลูกการแทนที่ทรี ซึ่งแต่ละโหนดมีจำนวนลิงค์ฟิลด์ไม่เท่ากัน ทำให้ยากต่อการปฏิบัติการ วิธีการแทนที่ที่ง่ายที่สุดคือ ทำให้แต่ละโหนดมี จำนวนลิงค์ฟิลด์เท่ากัน โดยอาจใช้วิธีการต่อไปนี้
1. โหนดแต่ละโหนดเก็บพอยเตอร์ชี้ไปยังโหนดลูกทุกโหนด การแทนที่ทรีด้วยวิธีนี้ จะให้จำนวนฟิลด์ในแต่ละโหนดเท่ากันโดยกำหนดให้มีขนาดเท่ากับจำนวนโหนดลูกของโหนดที่มีลูกมากที่สุด โหนดใดไม่มีโหลดลูกก็ให้ค่าพอยเตอร์ในลิงค์ฟิลด์นั้นมีค่าเป็น Nullและให้ลิงค์ฟิลด์แรกเก็บค่าพอยเตอร์ชี้ไปยังโหนด ลูกลำดับที่หนึ่ง ลิงค์ฟิลด์ที่สองเก็บค่าพอยเตอร์ชี้ไปยังโหนดลูกลำดับที่สอง และลิงค์ฟิลด์อื่นเก็บค่าพอยเตอร์ของโหนดลูกลำดับ ถัดไปเรื่อย ๆการแทนทรีด้วยโหนดขนาดเท่ากันค่อนข้างใช้เนื้อที่จำนวนมาก เนื่องจากแต่ละโหนดมีจำนวนโหนดลูกไม่เท่ากันหรือบางโหนดไม่มีโหนดลูกเลยถ้าเป็นทรีที่แต่ละโหนดมีจำนวนโหนดลูกที่แตกต่างกันมาก จะเป็นการสิ้นเปลืองเนื้อที่ในหน่วยความจำโดยเปล่าประโยชน์
2. แทนทรีด้วยไบนารีทรีเป็นวิธีแก้ปัญหาเพื่อลดการ สิ้นเปลืองเนื้อที่ในหน่วยความจำก็คือกำหนดลิงค์ฟิลด์ให้มีจำนวนน้อยที่สุดเท่าที่จำเป็นเท่านั้น
โดยกำหนดให้แต่ละโหนดมีจำนวนลิงค์ฟิลด์สองลิงค์ฟิลด์
-ลิงค์ฟิลด์แรกเก็บที่อยู่ของโหนดลูกคนโต
-ลิงค์ฟิลด์ที่สองเก็บที่อยู่ของโหนดพี่น้องที่เป็นโหนดถัดไป
โหนดใดไม่มีโหนดลูกหรือไม่มีโหนดพี่น้องให้ค่าพอยน์เตอร์ในลิงค์ฟิลด์มีค่าเป็น Null
โครงสร้างทรีที่แต่ละโหนดมีลิงค์ฟิลด์แค่สองลิงค์ฟิลด์ ซึ่งช่วยให้ประหยัดเนื้อที่ในการจัดเก็บได้มาก เรียกโครงสร้างทรีที่แต่ละโหนดมีจำนวนโหนดลูกไม่เกินสองหรือแต่ละโหนดมีจำนวนทรีย่อยไม่เกินสองนี้ว่า ไบนารีทรี (Binary Tree)
ไบนารีทรีที่ทุก ๆ โหนดมีทรีย่อยทางซ้ายและทรีย่อยทางขวา ยกเว้นโหนดใบ และโหนดใบทุกโหนดจะต้องอยู่ที่ระดับเดียวกันเรียกว่า ไบนารีทรีแบบสมบูรณ์ (complete binary tree)สามารถคำนวณจำนวนโหนดทั้งหมดในไบนารีทรีแบบสมบูรณ์ได้ถ้ากำหนดให้ L คือระดับของโหนดใด ๆ และN คือจำนวนโหนดทั้งหมดในทรีจะได้ว่าระดับ 1 มีจำนวนโหนด 1 โหนดระดับ 2 มีจำนวนโหนด 3 โหนดระดับ 3 มีจำนวนโหนด 7 โหนด
ระดับ L มีจำนวนโหนด 2L – 1 โหนดนั่นคือ จำนวนโหนดทั้งหมดในทรีสมบูรณ์ที่มี L ระดับ สามารถคำนวณได้จากสูตรดังนี้
N = 2L – 1
การแปลงทรีทั่วไปให้เป็นไบนารีทรี
ขั้นตอนการแปลงทรีทั่วๆ ไปให้เป็นไบนารีทรี มีลำดับขั้นตอนการแปลง ดังต่อไปนี้1. ให้โหนดแม่ชี้ไปยังโหนดลูกคนโต แล้วลบความสัมพันธ์ ระหว่างโหนดแม่และโหนดลูกอื่น ๆ2. ให้เชื่อมความสัมพันธ์ระหว่างโหนดพี่น้อง3. จับให้ทรีย่อยทางขวาเอียงลงมา 45 องศา
การท่องไปในไบนารีทรี
ปฏิบัติการที่สำคัญในไบนารีทรี คือ การท่องไปในไบนารีทรี (Traversing Binary Tree) เพื่อเข้าไปเยือนทุก ๆโหนดในทรี ซึ่งวิธีการท่องเข้าไปต้องเป็นไปอย่างมีระบบแบบแผน สามารถเยือนโหนดทุก ๆ โหนด ๆ ละหนึ่งครั้งวิธีการท่องไปนั้นมีด้วยกันหลายแบบแล้วแต่ว่าต้องการลำดับขั้นตอนการเยือนอย่างไร โหนดที่ถูกเยือนอาจเป็นโหนดแม่ (แทนด้วย N)ทรีย่อยทางซ้าย (แทนด้วย L)หรือทรีย่อยทางขวา (แทนด้วย R)
มีวิธีการท่องเข้าไปในทรี 6 วิธี คือ NLRLNR LRN NRL RNL และ RLN แต่วิธีการท่องเข้าไปไบนารีทรีที่นิยมใช้กันมากเป็นการท่องจากซ้ายไปขวา 3 แบบแรกเท่านั้นคือ NLR LNR และ LRN ซึ่งลักษณะการนิยามเป็นนิยามแบบ รีเคอร์ซีฟ(Recursive)ซึ่งขั้นตอนการท่องไปในแต่ละแบบมีดังนี้
1. การท่องไปแบบพรีออร์เดอร์(Preorder Traversal)เป็นการเดินเข้าไปเยือนโหนดต่าง ๆ ในทรีด้วยวิธีNLR มีขั้นตอนการเดินดังต่อไปนี้(1) เยือนโหนดราก(2) ท่องไปในทรีย่อยทางซ้ายแบบพรีออร์เดอร์(3) ท่องไปในทรีย่อยทางขวาแบบพรีออร์เดอร์
2.การท่องไปแบบอินออร์เดอร์(Inorder Traversal)เป็นการเดินเข้าไปเยือนโหนดต่าง ๆในทรีด้วยวิธี LNRมีขั้นตอนการเดินดังต่อไปนี้(1) ท่องไปในทรีย่อยทางซ้ายแบบอินออร์เดอร์(2) เยือนโหนดราก(3) ท่องไปในทรีย่อยทางขวาแบบอินออร์เดอร์
3. การท่องไปแบบโพสออร์เดอร์(Postorder Traversal)เป็นการเดินเข้าไปเยือนโหนดต่าง ๆในทรีด้วยวิธี LRN มีขั้นตอนการเดินดังต่อไปนี้(1) ท่องไปในทรีย่อยทางซ้ายแบบโพสต์ออร์เดอร์(2) ท่องไปในทรีย่อยทางขวาแบบโพสต์ออร์เดอร์(3) เยือนโหนดราก
เอ็กซ์เพรสชันทรี (Expression Tree)เป็นการนำเอาโครงสร้างทรีไปใช้เก็บนิพจน์ทางคณิตศาสตร์โดยเป็นไบนารีทรี ซึ่งแต่ละโหนดเก็บตัวดำเนินการ (Operator) และและตัวถูกดำเนินการ(Operand) ของนิพจน์คณิตศาสตร์นั้น ๆ ไว้ หรืออาจจะเก็บค่านิพจน์ทางตรรกะ (Logical Expression)นิพจน์เหล่านี้เมื่อแทนในทรีต้องคำนึงลำดับขั้นตอนในการคำนวณตามความสำคัญของเครื่องหมายด้วยโดยมีความสำคัญตามลำดับดังนี้
- ฟังก์ชัน
- วงเล็บ
- ยกกำลัง
- เครื่องหมายหน้าเลขจำนวน (unary)
- คูณ หรือ หาร
- บวก หรือ ลบ
- ถ้ามีเครื่องหมายที่ระดับเดียวกันให้ทำจากซ้ายไปขวา
การแทนนิพจน์ในเอ็กซ์เพรสชันทรี ตัวถูกดำเนินการจะเก็บอยู่ที่โหนดใบ ส่วนตัวดำเนินการจะเก็บในโหนดกิ่ง หรือโหนดที่ไม่ใช่โหนดใบเช่น นิพจน์ A + B สามารถแทนในเอ็กซ์เพรสชันทรี
ไบนารีเซิร์ชทรี
ไบนารีเซิร์ชทรี (Binary Search Tree)เป็นไบนารีทรีที่มีคุณสมบัติที่ว่าทุก ๆ โหนดในทรี ค่าของโหนดรากมีค่ามากกว่าค่าของทุกโหนดในทรีย่อยทางซ้าย และมีค่าน้อยกว่าหรือเท่ากับค่าของทุกโหนดในทรีย่อยทางขวาและในแต่ละทรีย่อยก็มี คุณสมบัติเช่นเดียวกัน
ปฏิบัติการในไบนารีเซิร์ชทรี ปฏิบัติการเพิ่มโหนดเข้าหรือดึงโหนดออกจากไบนารีเซิร์ชทรีค่อนข้างยุ่งยากกว่าปฏิบัติการในโครงสร้างอื่น ๆเนื่องจากหลังปฏิบัติการเสร็จเรียบร้อยแล้วต้องคำนึงถึงความเป็นไบนารีเซิร์ชทรีของทรีนั้นด้วยซึ่งมีปฏิบัติการดังต่อไปนี้
(1) การเพิ่มโหนดในไบนารีเซิร์ชทรี การเพิ่มโหนดใหม่เข้าไปในไบนารีเซิร์ชทรี ถ้าทรีว่างโหนดที่เพิ่มเข้าไปก็จะเป็นโหนดรากของทรี ถ้าทรีไม่ว่างต้องทำการตรวจสอบว่าโหนดใหม่ที่เพิ่มเข้ามานั้นมีค่ามากกว่าหรือน้อยกว่าค่าที่โหนดราก ถ้ามีค่ามากกว่าหรือเท่ากันจะนำโหนดใหม่ไปเพิ่มในทรีย่อยทางขวาและถ้ามีค่าน้อยกว่านำโหนดใหม่ไปเพิ่มในทรีย่อยทางซ้ายในทรีย่อยนั้นต้องทำการเปรียบเทียบในลักษณะเดียวกันจนกระทั่งหาตำแหน่งที่สามารถเพิ่มโหนดได้ ซึ่งโหนดใหม่ที่เพิ่มในทรีในที่สุดจะต้องเป็นโหนดใบ
(2) การดึงโหนดในไบนารีเซิร์ชทรีหลังจากดึงโหนดที่ต้องการออกจากทรีแล้วทรีนั้นต้องคงสภาพไบนารีเซิร์ชทรีเหมือนเดิมก่อนที่จะทำการดึงโหนดใด ๆ ออกจากไบนารีเซิร์ชทรี ต้องค้นหาก่อนว่าโหนดที่ต้องการดึงออกอยู่ที่ตำแหน่งไหนภายในทรีและต้องทราบที่อยู่ของโหนดแม่โหนดนั้นด้วยแล้วจึงทำการดึงโหนดออกจากทรีได้ ขั้นตอนวิธีดึงโหนดออกอาจแยกพิจารณาได้ 3กรณีดังต่อไปนี้
ก. กรณีโหนดที่จะดึงออกเป็นโหนดใบการดึงโหนดใบออกในกรณีนี้ทำได้ง่ายที่สุดโดยการดึงโหนดนั้นออกได้ทันที เนื่องจากไม่กระทบกับโหนดอื่นมากนัก วิธีการก็คือให้ค่าในลิงค์ฟิลด์ของโหนดแม่ซึ่งเก็บที่อยู่ของโหนดที่ต้องการดึงออกให้มีค่าเป็น Null
ข. กรณีโหนดที่ดึงออกมีเฉพาะทรีย่อยทางซ้ายหรือทรีย่อยทางขวาเพียงด้านใดด้านหนึ่ง วิธีการดึงโหนดนี้ออกสามารถใช้วิธีการเดียวกับการดึงโหนดออกจากลิงค์ลิสต์ โดยให้โหนดแม่ของโหนดที่จะดึงออกชี้ไปยังโหนดลูกของโหนดนั้นแทน
ค. กรณีโหนดที่ดึงออกมีทั้งทรีย่อยทางซ้ายและทรีย่อยทางขวาต้องเลือกโหนดมาแทนโหนดที่ถูกดึงออก โดยอาจจะเลือกมาจากทรีย่อยทางซ้ายหรือทรีย่อยทางขวาก็ได้
- ถ้าโหนดที่มาแทนที่เป็นโหนดที่เลือกจากทรีย่อยทางซ้ายต้องเลือกโหนดที่มีค่ามากที่สุดในทรีย่อยทางซ้ายนั้น
- ถ้าโหนดที่จะมาแทนที่เป็นโหนดที่เลือกมาจากทรีย่อยทางขวา ต้องเลือกโหนดที่มีค่าน้อยที่สุดในทรีย่อยทางขวานั้น

วันพฤหัสบดีที่ 20 สิงหาคม พ.ศ. 2552

DTS06-05/08/52

Queues

คิวเป็นโครงสร้างข้อมูลแบบลำดับ (Sequential) ลักษณะของคิวเราสามารถพบได้ในชีวิตประจำวัน เช่น การเข้าแถวตามคิวเพื่อรอรับบริการต่างๆ ลำดับการสั่งพิมพ์งาน เป็นต้น ซึ่งจะเห็นได้ว่าลักษณะของการทำงานจะเป็นแบบใครมาเข้าคิวก่อนจะ ได้รับบริการก่อน เรียกได้ว่าเป็นลักษณะการทำงานแบบ FIFO (First In , First Out)

ลักษณะของคิว จะมีปลายสองข้าง ซึ่งข้างหนึ่งจะเป็นช่องทางสำหรับข้อมูลเข้าที่เรียกว่า REAR และอีกข้างหนึ่งซึ่งจะเป็นช่องทางสำหรับข้อมูลออก เรียกว่า FRONT


ในการทำงานกับคิวที่ต้องมีการนำข้อมูลเข้าและออกนั้น จะต้องมีการตรวจสอบว่าคิวว่างหรือไม่ เมื่อต้องการนำข้อมูลเข้า เพราะหากคิวเต็มก็จะไม่สามารถทำการนำข้อมูลเข้าได้ เช่นเดียวกัน เมื่อต้องการนำข้อมูลออกก็ต้องตรวจสอบด้วยเช่นกัน ว่าในคิวมีข้อมูลอยู่หรือไม่ หากคิวไม่มีข้อมูลก็จะไม่สามารถนำข้อมูลออกได้เช่นกัน

การแทนที่ข้อมูลของคิว มี 2 วิธี คือ

1.การ แทนที่ข้อมูลของคิวแบบอะเรย์ ซึ่งเป็นการจัดสรรเนื้อที่หน่วยความจำแบบสแตติก นั่นคือ มีการกำหนดขนาดของคิวล่วงหน้าว่ามีขนาดเท่าใดและจะมีการจัดสรรเนื้อที่หน่วย ความจำให้เลย
2.การแทนที่ข้อมูลของคิวแบบลิงค์ลิสต์ ประกอบไปด้วย 2 ส่วน
2.1. Head Node มี 3 ส่วน มีพอยเตอร์ 2 ตัว และ จำนวนสมาชิก
2.2. Data Node จะมีข้อมูล และ พอยเตอร์ชี้ตัวถัดไป

การดำเนินการเกี่ยวกับคิว
1.Create Queue คือการสร้างคิวขึ้นมา แล้วจัดสรรหน่วยความจำให้กับ Head Node และพอยเตอร์มีค่าเป็น Null
2.Enqueue คือ การเพิ่มข้อมูลลงไปในคิวโดยการเพิ่มจะเพิ่มจากส่วนท้าย
3.Dequeue คือ การนำข้อมูลในคิวออก จะออกโดยข้อมูลที่เข้าไปตัวแรกจะออกก่อน
4.Queue Front คือ การนำข้อมูลตัวแรกที่เข้าไปในคิวออกมาแสดง
5.Queue Rear คือ การนำข้อมูลตัวสุดท้ายที่เข้ามาในคิวออกมาแสดง
6.Empty Queue คือ เป็นการตรวจสอบว่าคิวนั้นยังคงว่างอยู่หรือไม่
7.Full Queue คือ เป็นการตรวจสอบว่าคิวนั้นเต็มหรือไม่
8.Queue Count คือ เป็นการนับจำนวนข้อมูลที่อยูในคิว ว่ามีจำนวนเท่าไร
9.Destroy Queue คือ การลบข้อมูลที่อยูในคิวทิ้ง

การเพิ่มข้อมูลเข้าไปในคิว

การจะเพิ่มข้อมูลเข้าไปในคิว จะกระทำที่ตำแหน่ง REAR หรือท้ายคิว และก่อนที่จะเพิ่มข้อมูลจะต้องตรวจสอบก่อนว่าคิวเต็มหรือไม่ โดยการเปรียบเทียบค่า REAR ว่า เท่ากับค่า MAX QUEUE หรือไม่ หากว่าค่า REAR = MAX QUEUE แสดงว่าคิวเต็มไม่สามารถเพิ่มข้อมูลได้ แต่หากไม่เท่า แสดงว่าคิวยังมีที่ว่างสามารถเพิ่มข้อมูลได้ เมื่อเพิ่มข้อมูลเข้าไปแล้ว ค่า REAR ก็จะเป็นค่าตำแหน่งท้ายคิวใหม่

การนำข้อมูลออกจากคิว
การนำข้อมูลออกจากคิวจะกระทำที่ตำแหน่ง FRONT หรือส่วนที่เป็นหัวของคิว โดยก่อนที่จะนำข้อมูลออกจากคิวจะต้องมีการตรวจสอบก่อนว่ามีข้อมูลอยู่ในคิว หรือไม่ หากไม่มีข้อมูลในคิวหรือว่าคิวว่าง ก็จะไม่สามารถนำข้อมูลออกจากคิวได้

DTS05-29/07/52

การแทนที่ข้อมูลของสแตกแบบอะเรย์
การแทนที่ข้อมูลของสแตกแบบลิงค์ลิสตจะประกอบไปด้วย 2 ส่วน คือ
1. Head Node จะประกอบไปด้วย 2ส่วนคือ top pointer และจำนวนสมาชิกในสแตก
2. Data Node จะประกอบไปด้วยข้อมูล (Data)และพอยเตอร์ ที่ชี้ไปยังข้อมูล

การดำเนินการเกี่ยวกับสแตกการดำเนินการเกี่ยวกับสแตก ได้แก่
1. Create Stack จัดสรรหน่วยความจำให้แก่ Head Nodeและส่งค่าตำแหน่งที่ชี้ไปยัง Head ของสแตกกลับมา
2.Push Stack การเพิ่มข้อมูลลงไปในสแตก
3.Pop stack การนำข้อมูลบนสุดออกจากสแตก
4. Stack Top เป็นการคัดลอกข้อมูลที่อยู่บนสุดของสแตกโดยไม่มีการลบข้อมูลออกจากสแตก
5.Empty Stack เป็นการตรวจสอบการวางของสแตกเพื่อไม่ให้เกิดความผิดพลาดในการนำข้อมูลออกจากสแตกที่เรียกว่า Stack Underflow
6. Full Stack เป็นการตรวจสอบว่าสแตกเต็มหรือไม่เพื่อไม่ให้เกิดความผิดพลาดในการนำข้อมูลเข้าสแตกที่เรียกว่า Stack Overflow
7. Stack Count เป็นการนับจำนวนสมาชิกในสแตก8.Destroy Stack เป็นการลบข้อมูลทั้งหมดที่อยู่ใน สแตก
8.Destroy Stack เป็นการลบข้อมูลทั้งหมดที่อยู่ใน สแตก

การใช้ สแตค เพื่อแปลรูปนิพจน์ทางคณิตศาสตร์
รูปแบบนิพจน์ทางคณิตศาสตร์
• นิพจน์ Infix คือ นิพจน์ที่เครื่องหมายดำเนินการ (Operator) อยู่ระหว่างตัวดำเนินการ (Operands) เช่น A+B-C
• นิพจน์ Prefix คือ นิพจน์ที่เครื่องหมายดำเนินการ (Operator) อยู่หน้าตัวดำเนินการ (Operands) เช่น +-AB
• นิพจน์ Postfix คือ นิพจน์ที่เครื่องหมายดำเนินการ (Operator) อยู่หลังตัวดำเนินการ (Operands) เช่น AC*+

ลำดับการทำงานของตัวดำเนินการทางคณิตศาสตร์ (Operator Priority)
มีการลำดับความสำคัญของตัวดำเนินการจากลำดับสำคัญมากสุดไปน้อยสุด คือ ลำดับที่มีความสำคัญมากที่ต้องทำก่อน ไปจนถึงลำดับที่มีความสำคัญน้อยสุดที่ไว้ทำทีหลัง ดังนี้


เครื่องหมายบวก ( + ) , ลบ ( - )
เครื่องหมายคูณ ( * ) , หาร ( / )
เครื่องหมายวงเล็บเปิด (
เครื่องหมายวงเล็บปิด )

ขั้นตอนการแปลงจากนิพจน์ Infix เป็นนิพจน์ Postfix

1. อ่านอักขระในนิพจน์ Infix เข้ามาทีละตัว
2. ถ้าเป็นตัวถูกดำเนินการจะถูกย้ายไปเป็นตัวอักษรในนิพจน์ Postfix
3. ถ้าเป็นตัวดำเนินการ จะนำค่าลำดับความสำคัญของตัว ดำเนินการที่อ่านเข้ามาเทียบกับค่าลำดับความสำคัญของตัวดำเนินการที่อยู่บนสุดของสแตก
- ถ้ามีความสำคัญมากกว่า จะถูก push ลงในสแตก
- ถ้ามีความสำคัญน้อยกว่าหรือเท่ากัน จะต้อง pop ตัวดำเนินการที่อยู่ในสแตกขณะนั้นไปเรียงต่อกับตัวอักษรในนิพจน์ Postfix
4. ตัวดำเนินการที่เป็นวงเล็บปิด “)” จะไม่ push ลงในสแตกแต่มีผลให้ตัวดำเนินการอื่น ๆ ถูก pop ออกจากสแตกนำไป เรียงต่อกันในนิพจน์ Postfix จนกว่าจะเจอ “(” จะ popวงเล็บเปิดออกจากสแตกแต่ไม่นำไปเรียงต่อ
5. เมื่อทำการอ่านตัวอักษรในนิพจน์ Infix หมดแล้ว ให้ทำการ Pop ตัวดำเนินการทุกตัวในสแตกนำมาเรียงต่อในนิพจน์Postfix

เช่น
*** เครื่องหมายดำเนินการ (operand) ได้แก่เครื่องหมาย + - * ^ ตัวถูกดำเนินการ ได้แก่ สัญลักษณ์แทนค่าตัวเลข เช่น A B C Dหรือตัวแปรอื่น
สำหรับการดำเนินการด้านการคำนวณนั้น ในระบบคอมพิวเตอร์ไม่สามารถที่จะจัดลำดับของการคำนวณในรูปแบบของ infix ได้ แต่จะแปลงเป็นนิพจน์ของ infix หรือ prefix เสียก่อน โดยลักษณะของการแปลงนิพจน์จะใช้การเปรียบเทียบความสำคัญของตัวดำเนินการ
ลำดับความสำคัญของตัวดำเนินการ
+ -
* /
(
)

ขั้นตอนการแปลง infix เป็น postfix
1.อ่านอักขระใน infix
2.ถ้าเป็น operand ย้ายไปใส่ใน postfix
3.ถ้าเป็น operator จะต้องดูลำดับความสำคัญของตัวดำเนินการด้วยแล้วใส่ลงในสแตกที่เก็บตัวดำเนินการ ถ้ามีค่ามากกว่าให้ push ถ้ามีค่าน้อยกว่าหรือเท่ากันให้ pop ออกแล้วไปเรียงต่อตัวอักษรใน postfix
4.ตัวดำเนินการที่เป็น ) จะไม่ถูก push แต่จะทำให้ตัวดำเนินการตัวอื่นถูก pop ออกมาแล้วไปเรียงต่อใน postfix
5.เมื่ออ่านอักขระใน infix หมด ให้ pop ตัวดำเนินการทุกตัวมาเรียงต่อใน postfix
*** ถ้าเจอเครื่องหมาย + - หลังเครื่องหมาย * / ให้ pop เครื่องหมายในสแตกออก
ถ้าเจอเครื่องหมาย * / หลังเครื่องหมาย + - ให้ push ลงในสแตก
การคำนวณค่า postfix
1.อ่านตัวอักษรจาก postfix ที่ละตัว
2.ถ้าเป็น operand ให้ push ไปเรื่อยๆ
3.ถ้าเป็น operator ให้ pop ตัวอักษรออก 2 ตัว แล้วทำการคำนวณตัวที่ถูก pop ที่หลังจะเป็นตัวตั้งแล้วนำ push ผลลัพธ์ลงไป